1.4 Théorèmes de Montel et de la représentation conforme (201, 203, 204, 245) [2]

Le théorème de Montel est un résultat analogue au théorème d'Ascoli, cette fois-ci dans les fonctions holomorphes : il caractérise les parties relativement compactes de $\mathscr{H}(\Omega)$ pour la topologie de la convergence sur tous compacts. Le théorème de la représentation conforme, quant à lui, caractérise les ouverts simplements connexes distincts du plan complexe \mathbb{C} : ils sont en bijection biholomorphe avec le disque ouvert \mathbb{D} !

Théorème 1.9 (Montel). Soient $\Omega \subset \mathbb{C}$ un ouvert et $\mathscr{A} \subset \mathscr{H}(\Omega)$. Les deux conditions suivantes sont équivalentes :

- 1. \mathscr{A} est relativement compacte dans $\mathscr{H}(\Omega)$ muni de la topologie de la convergence uniforme sur tous compacts,
- 2. Pour tout $K \subset \Omega$ compact, il existe $C_K > 0$ tel que :

$$\forall f \in \mathscr{A}, \quad ||f||_{\infty,K} \le C_K.$$

 $D\acute{e}monstration$. 2. \Rightarrow 1. Soit $(K_n)_{n\in\mathbb{N}}$ une suite exhaustive de compacts de Ω , c'est-à-dire une suite de parties compactes de \mathbb{C} telles que :

Une telle suite serait par exemple:

$$K_n = \left\{ z \in \mathbb{C} \mid |z| \le n, d(z, \Omega^c) \ge \frac{1}{n} \right\},$$

et c'est ce que je considérerais pour la suite. Soit $(f_k)_{k\in\mathbb{N}}\in\mathscr{A}^{\mathbb{N}}$. Montrons que pour tout $n\in\mathbb{N},$ $(f_k)_{k\in\mathbb{N}}\in\mathscr{C}^0(K_n,\mathbb{C})^{\mathbb{N}}$ vérifie les hypothèses du théorème d'Ascoli.

— Soit $z \in K_n$. La partie $\mathscr{A}_z = \{f_k(z) \mid k \in \mathbb{N}\}$ est bornée par hypothèse :

$$\forall k \in \mathbb{N}, \quad |f_k(z)| \le ||f_k||_{\infty, K_n} \le C_{K_n},$$

donc relativement compacte.

— La suite $\left(f_{k|K_n}\right)_{k\in\mathbb{N}}$ est équicontinue. En effet, montrons qu'il existe une constante de Lipschitz L indépendante de k telle que f_k soit L-Lipschitzienne. Soit $z\in K_n$. On a que $\overline{\mathbb{D}}\left(z,\frac{1}{2n}\right)\subset K_{2n}$. Par la formule de Cauchy, on a :

$$f'_k(z) = \frac{1}{2i\pi} \int_{\partial \mathbb{D}(z, \frac{1}{2n})} \frac{f_k(\zeta)}{(\zeta - z)^2} d\zeta.$$

Ainsi:

$$|f'_k(z)| \le 2n ||f_k||_{\infty, K_{2n}} \le 2n C_{K_{2n}}.$$

Et finalement :

$$\forall k \in \mathbb{N}, \quad \|f_k'\|_{\infty, K_n} \leq 2nC_{K_{2n}}.$$

ATTENTION!! Ne pas appliquer l'inégalité des accroissements finis ici!! Il n'est valable que sur un **ouvert convexe!!** Je me suis trompé désolé. On contourne le problème ainsi : en prenant $z_1 \in K_n$, on a :

$$\mathbb{D}\left(z_1,\frac{1}{2n}\right)\subset K_{2n}.$$

Ainsi, par l'inégalité des accroissements finis :

$$\forall z_2 \in \mathbb{D}\left(z_1, \frac{1}{2n}\right), \quad |f_k(z_2) - f_k(z_1)| \le ||f_k'||_{\infty, K_{2n}} |z_2 - z_1| \le 4nC_{K_{4n}} |z_2 - z_1|.$$

Enfin:

$$\forall z_2 \in K_n \setminus \mathbb{D}\left(z_1, \frac{1}{2n}\right), \quad |f_k(z_2) - f_k(z_1)| \le 2\|f_k\|_{\infty, K_n} \le 2C_{K_n} \le 2C_{K_n} \times 2n|z_2 - z_1|.$$

En prenant donc $L = \max(4nC_{K_{4n}}, 4nC_{K_n})$, on a que les f_k sont L-lipschitziennes sur K_n . La suite $\left(f_{k|K_n}\right)_{k\in\mathbb{N}}$ est donc équicontinue!

Par le théorème d'Ascoli, il existe donc une extractrice φ_n et une fonction $f^{[n]} \in \mathscr{C}^0(K_n, \mathbb{C})$ telles que :

$$f_{\varphi_n(k)|K_n} \xrightarrow[k \to +\infty]{\|\cdot\|_{\infty,K_n}} f^{[n]}.$$

Par procédé d'extraction diagonale, il existe donc une extraction φ indépendante de n telle que pour tout $n \in \mathbb{N}^*$:

$$f_{\varphi(k)|K_n} \xrightarrow[k \to +\infty]{\|\cdot\|_{\infty,K_n}} f^{[n]}.$$

Détails de l'extraction diagonale : Pour n = 1, d'après ce qu'on a vu, il existe une extractrice φ_1 telle que :

$$f_{\varphi_1(k)|K_1} \xrightarrow[k \to +\infty]{\|\cdot\|_{\infty,K_1}} f^{[1]}.$$

Pour $n \geq 1$, si les extractrices $\varphi_1, \ldots, \varphi_n$ sont construites, alors, la suite de fonctions $\left(f_{\varphi_1 \circ \cdots \circ \varphi_n(k)_{|K_{n+1}}}\right)_{k \in \mathbb{N}}$ vérifier les hypothèses du théorème d'Ascoli comme extraction de la suite $\left(f_{k_{|K_{n+1}}}\right)_{k \in \mathbb{N}}$ et donc il existe une extractrice φ_{n+1} telle que :

$$f_{\varphi_1 \circ \cdots \circ \varphi_n \circ \varphi_{n+1}(k)|K_{n+1}} \xrightarrow[k \to +\infty]{\|\cdot\|_{\infty,K_{n+1}}} f^{[n+1]}.$$

Posons alors l'application:

$$\varphi : \mathbb{N} \longrightarrow \mathbb{N}$$

$$k \longmapsto \varphi_1 \circ \cdots \circ \varphi_k(k).$$

Il s'agit bien d'une application strictement croissante car $\varphi_k\left(\varphi_{k+1}(k+1)\right) \geq \varphi_k(k+1) > \varphi_k(k)$ et on conclut par stricte croissance des $\varphi_i, i \leq k-1$. De plus, pour $n \in \mathbb{N}^*$ fixé, la suite $\left(f_{\varphi(k)|K_n}\right)_{k \geq n}$ est une suite extraite de la suite $\left(f_{\varphi_1 \circ \cdots \circ \varphi_n(k)|K_n}\right)_{k \geq n}$, donc converge également uniformément vers $f^{[n]}$, c'est ce qu'on voulait avoir!

Posons alors la fonction

$$\begin{array}{cccc} f & : & \Omega & \longrightarrow & \mathbb{C} \\ & z & \longmapsto & f^{[n]}(z) \text{ lorsque } z \in K_n. \end{array}$$

Cette fonction est bien définie. En effet, pour tout $z \in \Omega$, il existe $n \in \mathbb{N}^*$ tel que $z \in K_n$ et, si $n \leq m$, alors :

$$\forall z \in K_n, \quad f^{[m]}(z) = \lim_{k \to +\infty} f_{\varphi(k)|K_m}(z) = \lim_{k \to +\infty} f_{\varphi(k)|K_n}(z) = f^{[n]}(z).$$

De plus, la suite $(f_{\varphi(k)})_{k\in\mathbb{N}}$ converge vers f sur tous compacts de Ω . En effet, si $K\subset\Omega$ est un compact, il existe $n\in\mathbb{N}$ tel que $K\subset K_n$ et donc :

$$||f_{\varphi(k)} - f||_{\infty,K} \le ||f_{\varphi(k)} - f||_{\infty,K_n} = ||f_{\varphi(k)}|_{K_n} - f^{[n]}||_{\infty,K_n} \xrightarrow{k \to +\infty} 0.$$

Par le théorème de Weierstrass, on a que $f \in \mathcal{H}(\Omega)$. Ainsi, \mathscr{A} est relativement compacte!

 $1. \Rightarrow 2.$ Par contraposée, s'il existe $K \subset \Omega$ compact tel que pour tout C > 0, il existe $f \in \mathscr{A}$ tel que $||f||_{\infty,K} > C$, alors en particulier, pour tout $n \in \mathbb{N}^*$, il existe $f_n \in \mathscr{A}$ tel que :

$$||f_n||_{\infty,K} \geq n.$$

Ainsi, la suite $(f_n)_{n\in\mathbb{N}}\in\mathscr{A}^{\mathbb{N}}$ n'admet aucune sous-suite convergente en norme uniforme sur K. Donc \mathscr{A} n'est pas relativement compacte.

Remarque 1.4.1 (Pourquoi j'ai utilisé des suites pour caractériser la (relative) compacité?). Cette preuve repose avant tout sur le fait que $\mathcal{H}(\Omega)$ muni de la topologie de la convergence uniforme sur tout compact est métrisable. En effet, on a vu dans la preuve que si $(K_n)_{n\in\mathbb{N}^*}$ est une suite exhaustive de compacts de Ω , alors tout compact $K\subset\Omega$ est inclus dans un K_n . Ainsi, la convergence uniforme sur tout compact équivaut à la convergence uniforme sur K_n pour tout n. En posant, pour $f,g\in\mathcal{H}(\Omega)$ la quantité :

$$d(f,g) = \sum_{n=1}^{+\infty} \frac{1}{2^n} \frac{\|f - g\|_{\infty,K_n}}{1 + \|f - g\|_{\infty,K_n}}$$

on a que d est une distance sur $\mathscr{H}(\Omega)$ dont la topologie associée est exactement celle de la convergence uniforme sur K_n pour tout n. Ainsi, la compacité peut être caractérisée par des suites.

On va donc utiliser le théorème de Montel pour montrer le théorème de la représentation conforme.

Théorème 1.10 (de la représentation conforme). Soit $\Omega \subsetneq \mathbb{C}$ un ouvert simplement connexe. Alors Ω et $\mathbb{D} := \{z \in \mathbb{C} \mid |z| < 1\}$ sont *conformément équivalents*, c'est-à-dire qu'ils sont en bijection biholomorphe.

Démonstration. Étape 1 : Réduction au cas borné :

Soit $\Omega \subsetneq \mathbb{C}$ un ouvert simplement connexe. Montrons qu'il est conformément équivalent à un ouvert borné. Soit $a \in \mathbb{C} \setminus \Omega$. Puisque Ω est simplement connexe et que la fonction $z \mapsto z - a$ est holomorphe et ne s'annule pas sur Ω , il existe une racine carrée de $z \mapsto z - a$ holomorphe sur Ω . Notons cette racine carrée g. On a alors que g ne s'annule pas sur Ω et que g est injective. En effet, si $z_1, z_2 \in \Omega$ sont tels que $g(z_1) = g(z_2)$, alors en particulier :

$$g(z_1)^2 = z_1 - a = g(z_2)^2 = z_2 - a.$$

Donc $z_1 = z_2$. Ainsi, le théorème de l'application ouverte s'applique et donc $g(\Omega) \subset \mathbb{C}^*$ est une partie ouverte et donc elle contient un certain disque ouvert $\mathbb{D}(b,r)$ avec r > 0. Or, $\mathbb{D}(-b,r) = -\mathbb{D}(b,r)$ et :

$$\forall z_1, z_2 \in \Omega, \quad g(z_1) \neq -g(z_2).$$

Ainsi:

$$g(\Omega) \cap \mathbb{D}(-b,r) = \emptyset.$$

Ce qui veut dire :

$$\forall z \in \Omega, \quad |g(z) + b| \ge r.$$

La fonction $f: z \mapsto \frac{1}{g(z)+b}$ est donc bornée. Mais elle est aussi holomorphe et injective. Ainsi, f réalise un biholomorphisme entre Ω et un ouvert borné. Quitte à également effectuer une translation et une homothétie, on peut supposer que Ω est conformément équivalent à un ouvert W inclus dans \mathbb{D} et contient 0.

Étape 2 : Utilisation du théorème de Montel pour trouver un candidat :

Notons $\mathscr{U}(W) \subset \mathscr{H}(W)$ l'ensemble des fonctions f holomorphes sur W à valeurs dans \mathbb{D} , injectives et vérifiant f(0) = 0. Cet ensemble n'est pas vide car il contient la fonction identité étant donné que $W \subset \mathbb{D}$. Posons également :

$$\mathscr{A} := \{ f \in \mathscr{U}(W) \mid |f'(0)| \ge 1 \}.$$

A n'est pas vide car contient la fonction identité. De plus, toute fonction de A prend ses valeurs dans D. Ainsi :

$$\forall K \subset W \text{ compact }, \ \forall f \in \mathscr{A}, \quad \|f\|_{\infty,K} \leq 1.$$

Ainsi, par le théorème de Montel, \mathscr{A} est relativement compacte dans $\mathscr{H}(W)$. Montrons que \mathscr{A} est également fermée. Soient $(f_n)_{n\in\mathbb{N}}\in\mathscr{A}^{\mathbb{N}}$ et $f\in\mathscr{H}(W)$ telles que (f_n) converge vers f sur tout compact de W. Par définition, les fonctions f_n sont injectives. Montrons alors que f l'est aussi. Il s'agit du théorème de Hurwitz que je redémontre à la main. Si c'est trop long, on pourra juste le citer et passer à la suite.

Supposons au contraire que f n'est pas injective et posons $a_1, a_2 \in W$ tels que $a_1 \neq a_2$ et $f(a_1) = f(a_2) =: b$. Puisque W est connexe, $W \setminus \{a_1\}$ l'est aussi et la suite de fonctions $(f_n - f_n(a_1))_{n \in \mathbb{N}}$ est une suite de fonctions jamais nulle sur $W \setminus \{a_1\}$ qui converge dans $\mathscr{H}(W \setminus \{a_1\})$ vers f - b, qui s'annule en a_2 . Par le principe des zéros isolés (qu'il est légitime d'appliquer ici car $|f'(0)| \geq 1$ par continuité, et donc f est non constante), on peut trouver un disque ouvert D centré en a_2 tel que $\overline{D} \subset W \setminus \{a_1\}$ et f - b ne s'annule pas sur ∂D . Ainsi :

$$m := \inf_{z \in \partial D} |f(z) - b| > 0$$

et par convergence uniforme des $f_n - f_n(a_1)$, on a, à partir d'un certain rang $n_0 \in \mathbb{N}$:

$$\inf_{z \in \partial D} |f_n(z) - f_n(a_1)| \ge \frac{m}{2}.$$

Cela veut donc dire:

$$\sup_{z \in \partial D} \left| \frac{1}{f_n(z) - f_n(a_1)} \right| \le \frac{2}{m}$$

et par le principe du maximum appliqué aux $\frac{1}{f_n - f_n(a_1)}$ pour $n \ge n_0$, on a en particulier :

$$\forall n \ge n_0, \quad \left| \frac{1}{f_n(a_2) - f_n(a_1)} \right| \le \frac{2}{m}$$

i.e.

$$\forall n \ge n_0, \quad |f_n(a_2) - f_n(a_1)| \ge \frac{m}{2} > 0.$$

En faisant tendre n vers $+\infty$, on obtient donc :

$$0 = |f(a_2) - f(a_1)| \ge \frac{m}{2} > 0$$
. **ABSURDE!**

Donc f est injective, on a également que f(0) = 0 puisque $f_n(0) = 0$ pour tout n et enfin :

$$\forall z \in W, \quad |f(z)| \le 1,$$

étant donné que pour tout n et pour tout $z \in W$, $|f_n(z)| < 1$. S'il existait $z_0 \in W$ tel que $|f(z_0)| = 1$, alors |f| admettrait un maximum local en z_0 . Ainsi, étant donné que f est holomorphe sur W connexe, f serait constante sur W, **ABSURDE** car $f'(0) \neq 0$. Donc f prend ses valeurs dans \mathbb{D} . Au final, $f \in \mathscr{A}$. Donc \mathscr{A} est fermée et relativement compacte, donc compacte. Ainsi, par continuité de l'application :

$$\begin{array}{ccc} \mathscr{H}(W) & \longrightarrow & \mathbb{R} \\ f & \longmapsto & |f'(0)| \end{array}$$

il existe $f^* \in \mathscr{A}$ tel que :

$$|f^{*'}(0)| = \max_{f \in \mathscr{A}} |f'(0)| = \max_{g \in \mathscr{U}(W)} |g'(0)|.$$

Montrons que ce f^* réalise un biholomorphisme entre W et \mathbb{D} .

Étape 3 : Conclusion.

Pour avoir la conclusion, étant donné que f^* est injective, il suffit de montrer que $f^*(W) = \mathbb{D}$. Supposons le contraire et montrons une contradiction avec le caractère maximal de $|f^{*'}(0)|$. Soit $W' = f^*(W)$. Pour $z_0 \in \mathbb{D}$, on définit la fonction :

$$\begin{array}{cccc} \varphi_{z_0} & : & \mathbb{D} & \longmapsto & \mathbb{D} \\ & z & \longmapsto & \frac{z_0 - z}{1 - \overline{z_0} z}. \end{array}$$

 φ_{z_0} est un biholomorphisme de \mathbb{D} sur lui-même. Ainsi, si $a \in \mathbb{D} \setminus W'$, alors, φ_a ne s'annule pas sur W', qui est simplement connexe. Ainsi, $\varphi_{a|W'}$ admet une racine carrée holomorphe que l'on notera $\sqrt{\varphi_a}$. Cette racine carrée est donc injective et à valeurs dans \mathbb{D} . En posant $b = \sqrt{\varphi_a(0)} = \sqrt{a}$ et la fonction $u = \varphi_b \circ (\sqrt{\varphi_a})$, on a :

$$u'(0) = \varphi_b'(b) \times \frac{\varphi_a'(0)}{2\sqrt{\varphi_a(0)}} = \frac{1}{|b|^2 - 1} \times \frac{|a|^2 - 1}{2b}$$

et donc:

$$|u'(0)| = \frac{|b|^2 + 1}{2|b|} > 1$$

car $|b| \neq 1$ et donc $|b|^2 + 1 - 2|b| = \left(|b| - 1\right)^2 > 0$. Ainsi, la fonction $g = u \circ f^* \in \mathscr{U}(W)$ et vérifie :

$$|g'(0)| = |f^{*'}(0) \times u'(f^{*}(0))| = \underbrace{|u'(0)|}_{>1} |f^{*'}(0)| > |f^{*'}(0)|$$
 ABSURDE!

Ainsi $f^*(W) = \mathbb{D}$ et donc f^* réalise le biholomorphisme souhaité entre W et \mathbb{D} , ce qui termine la preuve!!

Remarque 1.4.2 (Pourquoi trouver le candidat en regardant celui qui maximise |f'(0)|?). Cette condition, qu'on a montré étant suffisante, est en fait également nécessaire. Si f est injective, vérifie f(0) = 0 et $f(W) = \mathbb{D}$, alors, $si \ g \in \mathcal{U}(W)$, alors g s'écrit $h \circ f$ où $h = g \circ f^{-1}$. Ainsi, h est une fonction de \mathbb{D} dans \mathbb{D} vérifiant h(0) = 0. Par le lemme de Schwarz, on a donc que $|h'(0)| \leq 1$. Ainsi:

$$|g'(0)| = |h'(0)||f'(0)| \le |f'(0)|.$$